Stellar Populations Produced in Gravitationally Unstable Disks

John Forbes Galaxy Workshop - August 9, 2011

With Mark Krumholz and Andi Burkert

Thick Disks at Redshift Zero

Older stars have higher velocity dispersions

The Usual Story

 "This correlation is believed to arise because the irregular gravitational fields of spiral arms and/or molecular clouds gradually increase the random velocities of disk stars." - Binney and Tremaine, chapter 1

The Usual Story

 "This correlation is believed to arise because the irregular gravitational fields of spiral arms and/or molecular clouds gradually increase the random velocities of disk stars." - Binney and Tremaine, chapter 1

• i.e.

THIN DISK \rightarrow SOMETHING HAPPENS \rightarrow THICK DISK

The Usual Story

- "This correlation is believed to arise because the irregular gravitational fields of spiral arms and/or molecular clouds gradually increase the random velocities of disk stars." - Binney and Tremaine, chapter 1
- i.e.

THIN DISK \rightarrow

SOMETHING HAPPENS \rightarrow

THICK DISK

Two-body scattering Minor Mergers Perturbing galaxies Spiral Waves

Major Mergers Direct Accretion of Stars Scattering off Molecular Clouds Popping Clusters

High-z disks aren't thin!

Elmegreen+ 2005

Genzel+ 2011

Model Overview

- Goal: Simulate disks self-regulated near Q=1 over cosmological times
- Assumptions:
 - The disk is axisymmetric and thin
 - Fixed radius, circular velocity, and potential
 - Q=1 at all radii at all times
- Variables
 - Gas: $\Sigma(r,t) \sigma(r,t) Z(r,t)$
 - Stars: $\Sigma_*(r,t) \sigma_*(r,t) Z_*(r,t)$

Dynamics in a Q~1 Disk

Maintaining Gravitational Instability

• Formally, changes in the gas state variables depend on the torque:

$$\mathcal{T} = \int 2\pi r^2 T_{r\phi} dz$$

• So, set the torques such that Q=1, or dQ/dt=0

$$\frac{dQ}{dt} = \frac{\partial Q}{\partial \Sigma} \frac{\partial \Sigma}{\partial t} + \frac{\partial Q}{\partial \sigma} \frac{\partial \sigma}{\partial t} + \frac{\partial Q}{\partial \Sigma_*} \frac{\partial \Sigma_*}{\partial t} + \frac{\partial Q}{\partial \sigma_*} \frac{\partial \sigma_*}{\partial t} = 0.$$

Physical Ingredients

Star Formation

 $\dot{\Sigma}_*^{SF} = \epsilon_{\mathrm{ff}} f_{H_2} \Sigma \sqrt{G\rho}$

Krumholz & Tan 2007

- Gas Dissipation
 - Supersonic turbulence decays in a crossing time

$$\mathcal{L} = \eta \Sigma \sigma^2 \Omega \left(1 - rac{\sigma_t^2}{\sigma^2}
ight)^{3/2}$$

Stellar Migration

- When $Q_s < \sim 2$, transient spirals heat the stars
- This requires a net inward migration by conservation of energy
- Rate of inward migration set by assuming:

$$\frac{dQ_s}{dt}_{mig} = \frac{2 - Q_s}{T}$$

• T ~ 5 orbital times

Sample Run

- Smoothed Milky-Way like accretion history (Bouche+ 2010)
- Starting z=2
- Disk radius = 10 kpc
- Circular velocity = 220 km/s
- Star-formation efficiency per free-fall time= 0.01
- Stellar Migration Time = 10 outer orbits
- Maximal gas dissipation (all turbulent KE radiated in a scale height crossing time)

Column Density Evolution

Velocity Dispersion Evolution

- Solar neighborhood
- At z=0

Stars

Summary and Outlook

- 1-D simulation of gravitationally unstable galaxies from z=2 to z=0 on 1 CPU in ~1 hour [look for JF, Krumholz, & Burkert (2011, in prep)]
- Near-term Applications
 - Age-velocity dispersion- metallicity correlation
 - Parameter studies (dissipation, star formation, halo size)
 - More realistic accretion histories
- Longer-term extensions
 - Self-consistent evolution of circular velocity, radius
 - More sophisticated treatment of metals